
IET Generation, Transmission & Distribution
Research Article
Mixture design of experiments on portfolio
optimisation of power generation
IET Gener. Transm. Distrib., 201
322 & The Institution of Engin
ISSN 1751-8687
Received on 22nd March 2016
Revised on 14th September 2016
Accepted on 7th October 2016
doi: 10.1049/iet-gtd.2016.0422
www.ietdl.org
André Rodrigues Monticeli1, Pedro Paulo Balestrassi1 ✉, Antonio C. Zambroni de Souza2,

Rafael Coradi Leme1, Anderson Paulo de Paiva1

1Institute of Production Engineering and Management, Federal University of Itajuba (UNIFEI), 37500.903 Itajuba, Brazil
2Institute of Electrical Systems and Energy, Federal University of Itajuba (UNIFEI), 37500.903 Itajuba, Brazil

✉ E-mail: ppbalestrassi@gmail.com

Abstract: A methodology for obtaining an optimal portfolio for the generation of electricity at the lowest cost and risk is
proposed. This methodology uses a mixture design of experiments (MDEs) as a strategy for building nonlinear models of
risk and cost in portfolio optimisation for the generation of electricity. The result is compared with the traditional theory of
Markowitz mean–variance (MVP). The following characteristics are also presented in this study: the seasonality and
volatility of the time series were manipulated using moving windows and computational replicas in MDE; desirability
functions were used to optimise multiple variables, leading to lower cost and risk; Shannon entropy index was used to
handle better portfolio diversification. A case study based on the energy market of the state of California was used to
illustrate the proposal. The results show that this methodology facilitates decision making.
1 Introduction

Financial investors find portfolios that produce efficient results under
various economic conditions by using what is known as portfolio
theory. An efficient portfolio is a combination of investments that
maximises expected return while minimising risk. Such a
combination is known as an optimal portfolio [1].

There are several studies of portfolio theory in applications for
optimising the electricity generation mix of a particular region.
Among these studies is the Markowitz mean-variance model,
establishing the optimal strategy for minimising the risk and
maximising the return [2]. Two others include the variance–
Skewness–Kurtosis-based portfolio optimisation [3] and the use of
genetic algorithms and multi-objective optimisation [4].

How to allocate different assets in a profitable portfolio is one of
the major interesting issues in many areas including the electricity
market ([5–10]).

Portfolio theory can also be used to diversify power generation,
minimising cost and risk, while taking into consideration each
technology used in power generation. In [5], researchers created a
model of the cost and risk for electric power generation and an
efficient frontier was established through Markowitz
mean-variance (MVP) theory. Other studies that used MVP
portfolio optimisation in the energy market, such as [11], can be
highlighted. Such a work uses MVP to determine strategic
positions in balancing the energy market as well as in identifying
corresponding economic incentives in an analysis of the German
balancing energy demand. In [12], the authors combined the MVP
along with Monte Carlo simulations to identify, using their
investment returns, optimal-based load generation portfolios for
large electricity producers in liberalised electricity markets.

Designing an optimal portfolio has been the focus of many papers.
Among them can be cited the Markowitz mean-variance model,
establishing the optimal strategy for minimising risk and
maximising return [2]. Two others include minimising the
variance, by estimating the covariance matrix [13] and using an
estimator for the covariance matrix [14]. In [15], DeMiguel
introduces the restriction of the weight vector of the portfolio
standard. One can also find an optimal portfolio using design of
experiments [16]. Thus, the objective of this study is to use the
cost modelling and risk defined in [5] to find, through a mixture
design of experiments (MDEs), with moving windows and
computational replicas in MDE, an optimal portfolio for
generating electricity.

The value at risk (VaR) can be used to calculate the risk. VaR into
account not only the individual risk of each asset, expressed
statistically by variance of returns, but also the relationships
between the various assets given by correlations [16]. According
to [4], this metric describes the loss that can occur over a given
period with a certain level of confidence, due to exposure to
market risk. The risk can also be calculated using the metric value
in conditional risk, which identifies the average loss considering
all instances where the return is lower than the VaR [17]. In this
paper, standard deviation will be used, which is also considered a
good metric for defining risk by many researchers.

The advantage of using the proposed method is that there is no
need to model the time series or make predictions to capture its
behaviour. Then, seasonality and volatility data are integrated into
the portfolio optimisation. This makes the process easier, enabling
one to avoid concepts such as nonlinearity, volatility etc. In
addition, a careful review of the literature on electricity generation
portfolios using MDE produced no specific methodology
available, which emphasises the value of the methodology
developed in this article.

The behaviour of the times series is not a concern, since this is
handled by the moving windows and replica. The use of MDE is
well established in many fields. In Chemistry, Engineering,
Physics, etc., MDE has several applications. In Finance,
Economics, Computer Science and Mathematics, MDE was rarely
observed [18–20]. This new methodology for obtaining an optimal
portfolio combines some concepts (MDE, time series, entropy etc)
in a unique way, accounting for a unique decision-making
application in the electricity market.

This paper is organised as follows: Section 2 presents fundamental
concepts of portfolio optimisation from the theory of Markowitz
mean-variance (MVP). Concepts of optimisation based on MDE
are also covered, in addition to the Shannon entropy index. This
section also presents the concepts of moving windows and
replicas. The finishing section will present the desirability
function. A case study is used as an application of the proposed
methodology and the results are presented in Section 3. Finally,
the last section presents some concluding remarks.
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Table 1 Common MDE models

Terms Components in the model

linear β1A + β2B + β3C
quadratic linear + β4AB + β5AC + β6BC
special cubic quadratic + β7ABC
full cubic special cubic + β8AB(A−B) + β9AC(A −C) + β10BC(B −C)
special
quartic

quadratic + β7AABC + β8ABBC + β9ABCC

full quartic special quartic + β10AB(A−B) + β11AC(A −C) + β12BC(B− C)
+ β13AB(A −B)2 + β14AC(A −C)2 + β15BC(B −C)2

inverse β11/A + β21/B + β31/C

Fig. 1 Simplex coordinate system with three components
2 Portfolio optimisation based on mixture design
of experiments

2.1 Portfolio optimisation

Portfolio theory provides information, based on a risk-return
analysis, to aid decision-making related to selecting investments.
To help make this process more efficiently, researchers have
developed some models of portfolio optimisation. The investor’s
interest is, of course, to maximise the return and minimise the risk.

In portfolio problems, one should consider three dimensions: the
expected return of each asset making up the portfolio, the risk
each asset brings to the portfolio and the amount invested in each
asset [16].

Harry Markowitz presented a theory in 1952 (which can be found
in [21]), called mean-variance (MVP). MVP allows for the creation
of portfolios with minimum variance and the maximum expected
return. The expected return (denoted by mc) is the sum of the
weighted average of each asset in the proportions of investment as
weight (denoted by wi), thus mc =

∑n
i wimi. The variance of the

distribution indicates the amplitude of the possible outcomes
around the mean and can be written as the expected value of the
linear combination involving a covariance term sij, which
measures how the two active returns are correlated. The variance
is given by s2 = ∑n

i=1 w
2
i s

2
i +

∑
j=i wiwjsij.

Considering the weights and values of the MVP model as
proportions of a mixture whose sum is a unity, or restricted to a
certain limit, the MVP can also be characterised as an MDE.

MDE is a special class of response surface experiments in which
the investigational product consists of multiple components or
ingredients. The response is a function of the proportions of the
different ingredients of the mixture. These proportions are
non-negative and are expressed as fractions of the total mixture.
The sum must be equal to one [22].

The space formed by mixture experiment components is described
as a system of simplex coordinates. A uniform distribution of these
coordinates on the simplex is known as a lattice [22].

As shown in [22], the lattice can correspond to a specific
polynomial equation. For example, a polynomial model of degree
m to a mixture of q components, called q, m

{ }
simplex-lattice,

consists of a coordinated set of points that define the proportions
of each ingredient, distributed as as follows.

wi = 0,
1

m
,
2

m
, . . . , 1 (1)
(w1, w2, w3) = 1, 0, 0( ), 0, 1, 0( ), 0, 0, 1( )
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To illustrate, consider a mixture of three components, q = 3; the
degree of the polynomial is two, m = 2. Therefore, the proportion
of each component takes values wi = 0, (1/2) and 1 for all
i = 1, 2 and 3 and 3, 2{ } simplex-lattice consists of six points,
presented in (2), on the border of the triangle shown in Fig. 1.
(see (2))

The first three components are the nodes and represent the pure
mixture; the last three terms represent mixtures of two components
[16]. The central point, called the centroid, is the point where the
mixture has equal proportions of each component [16].

The relationship between response variables and the relative
proportion of q components can be defined by a polynomial of
degree m, which is usually linear, quadratic or cubic, depending
on the objectives of response. Mixture designs include many types
of model terms. Table 1 exemplifies these terms considering a
mixture design with three components A, B and C. The β
coefficient in the regression equation uses least squares
estimation [22].

One problem found with MDE is a tendency to generate highly
concentrated portfolios in a few assets with poor performance
outside the sample. This condition contradicts the concept of
diversification. Many authors, trying to improve portfolio
diversification, have used a maximisation of the Shannon entropy
index, shown next.
2.2 Shannon entropy

Diversify the portfolio is not to attribute most of the weight to just a
few assets, because that would increase their risk. Adding an upper
limit restricting the weights of assets, according to [14], is the most
common and simplest way of controlling the diversity of a portfolio.
The portfolio can also be diversified by imposing a lower limit
restriction on the weights. In this section, the constraints that are
found in the literature [23] were defined.

Consider the expected return mc of n active, the variance s2 and
the covariance sij . To optimise a portfolio is to maximise the
following objective function f (wi)

0 ≤ wi ≤ 1, for i = 1 to n (3)
∑n
i=1

wi = 1 (4)

Constraint (4) ensures non-negative weights, which is necessary to
calculate the entropy as discussed below, and constraint (5)
requires the investment of all capital.

The entropy constraint adds a lower bound on the entropy of a
portfolio. According to [24], the author defines entropy as a
,
1

2
,
1

2
, 0

( )
,

1

2
, 0,

1

2

( )
, 0,

1

2
,
1

2

( )
. (2)
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discrete set of probabilities p1, p2, . . . , pn as

Ent = −
∑n
i=1

pi(x) log pi(x) (5)

In a similar manner, the entropy of a continuous distribution with a
density distribution p(x) is defined by

Ent = −
∫1
−1

p x( ) log p x( )dx (6)

As in a portfolio, the weights for each asset i and wi are proportions;
then p(wi) is a discrete probability distribution. Thus, from (6), it can
be concluded that the entropy constraint adds a lower bound LE on
the entropy Ent of a portfolio wi, as defined below [25]

Ent = −
∑n
i=1

pi x( ) log pi x( ) = −
∑n
i=1

wi logwi ≥ LE (7)

In the least diverse scenario where only one component of w is 1 and
the rest of the components of w are 0, Ent reaches its minimum
−1× log 1 = 0. In the most diverse scenario that wi = (1/n) for
all i, Ent reaches its maximum −n (1/n) log (1/n)

( ) = log n.
Therefore, LE is between the interval 0, log n

[ ]
. Since a larger

Ent indicates better diversity, the entropy constraint uses a lower
bound LE within the same interval to control the diversity of wi
from being too low [14].
2.3 Moving windows and replicas

In this section, the basics of moving windows and replicas are
presented. The concept of autocorrelation function (ACF) is firstly
explored. According to [26], to determine a proper model for a
given time series data, it is necessary to carry out the ACF
analysis. These statistical measures reflect how the observations in
a time series relate to each other. For modelling purposes, it is
often useful to plot the ACF against consecutive time lags.

Consider a time series yt . The covariance between yt and its value
at another time period, yt+k is called the auto covariance at lag k, can
be defined by

gk = Cov yt , yt+k

( ) = E yt − m
( )

yt+k − m
( )[ ]

(8)

The collection of values gk , k = 0, 1, 2, . . . is defined as the auto
covariance function. g0 is the variance of the time series, that is
Table 2 Three replicas in MDE

Initial design One replicate added
(total of two
replicates)

Two replicates added
(total of three
replicates)

A B C A B C A B C

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0.5 0.5 0 0.5 0.5 0 0.5 0.5 0
0.5 0 0.5 0.5 0 0.5 0.5 0 0.5
0 0.5 0.5 0 0.5 0.5 0 0.5 0.5
0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

1 0 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0.33 0.33 0.33 0.33 0.33 0.33
1 0 0
⋮ ⋮ ⋮

0.33 0.33 0.33
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g0 = s2
y . The autocorrelation coefficient at lag k is

rk =
E[ yt − m
( )

yt+k − m
( )

]































E yt − m

( )2[ ]
E[ yt+k − m
( )2

]

√ = Cov yt , yt+k

( )
Var(yt)

= gk
g0

(9)

The collection of the values of rk , k = 0, 1, 2, . . . is called the
ACF. Note that by definition r0 = 1. As explained by Box and
Jenkins [27], the sample ACF plot is useful in modelling a time
series of length N. Since ACF is symmetrical regarding lag zero, it
is only required to plot the ACF sample for positive lags, from lag
one onwards to a maximum lag of about, according to [26, 27], about

L = N

4
(10)

Given a time series, a moving window consists of all possible subsets
of data size L. The size L of the window is given by the lag of the
ACF, according to (11), where N is the total number of data
points, and it is called the replica number of moving windows that
scroll the time series, so that all observations are analysed. The
step size of the movement of the window is given by the lag of
the ACF with 5% significance. In this paper, replicas and moving
windows are used to capture the behaviour, such as seasonality
and volatility, of the series over time. The moving windows
procedure simplifies the whole process because it is not necessary
to model the time series.

In design of experiments, the replicas are taken from identical
experimental runs but with different characteristics. When the
whole design is replicated, the complete set of design points is
duplicated. Replicates are used to estimate the variance
(experimental error) caused by slightly different experimental
conditions. The experimental error serves as a benchmark to
determine whether observed differences in the data are statistically
different. The design points that would be added to a
second-degree three-component simplex-lattice design, as shown
in Fig. 1, are exemplified in Table 2.

In prediction models, using replicas increase the accuracy of the
model, allowing for the detection of smaller effects, or to enough
power to detect a fixed size effect. True replication provides an
estimate of the error or noise in its process and may allow for
more precision in these estimates.

In summary, the advantage of using moving windows and replicas
are

† detect trends faster in series;
† explore best seasonality;
† increase in the degree of freedom for parameter estimation;
† improve the accuracy of the model and enable detection of small
effect in the series;
Fig. 2 Example for moving windows and replicas
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† provide an estimate of the error allowing for estimates that are
more accurate.

Fig. 2 shows an example of a temporal series with 13 replicas and
moving window size of 8.

To obtain an optimal portfolio, moving windows and replica are
used to capture the behaviour of the time series, while the entropy
index is used to diversify it. The desirability function is employed
as an optimisation of multiple responses.
2.4 Desirability function

The desirability function involves transforming each estimated
response variable ŷi into a desirable individual value di, where
0 ≤ di ≤ 1. The individual desirabilities are combined through a
simple geometric mean as in (12), or by the geometric mean
weight zi

( )
, given by (13). These weights indicate the importance

of each property in relation to others in the multi-objective
optimisation process.

D = d1 × d2 × · · · × dk
( )(1/k)

(11)

D = dz11 × dz22 × · · · × dzkk
( ) 1/Sk

i zi

( )
(12)

where k is the number of variables and the response value D
measures total desirability. The combination of the individual
desirability for each level of response and its value lie between the
interval [0, 1]

To minimise a response variable (y) through the desirability
function given by [28], a transformation of variables was used
according to (14). Equation (15) was used to maximise the
response variable (y)

d y
[ ] =

0
(Hi − ŷi)

(Hi − Ti)

[ ]l

1

⎧⎪⎪⎨
⎪⎪⎩

se
se
se

ŷi . Hi

Ti ≤ ŷi ≤ Hi

ŷi , Ti

(13)

d y
[ ] =

0
(ŷi − Li)

(Ti − Li)

[ ]l

1

⎧⎪⎪⎨
⎪⎪⎩

se
se
se

ŷi , Li
Li ≤ ŷi ≤ Ti

ŷi . Ti

(14)

where Li is the lower limit of desirability, Hi is the upper limit, Ti is
the target of the desirability and l is the parameter of desirability.
When l � 1, equal emphasis is given to the target and limits;
when l � 10, ŷi assumes a value closer to the target [16]. Fig. 3
illustrates how the weights affect the result.

An MVP using the average mc for the return, the variance s
2 as a

risk measure, the entropy Ent to improve portfolio diversification,
and adopting the transformations obtained by the desirability
function approach to portfolio optimisation based on MDE can be
Fig. 3 Desirability functions for different goals—how Weights affect their shape

IET Gener. Transm. Distrib., 2017, Vol. 11, Iss. 2, pp. 322–329
& The Institution of Engineering and Technology 2016
written, based on [16], as

Max D =





















dmc

× ds2 × dEnt
√

subject to: dn+1 yi
( ) ≥ D, i = 1, 2, . . . , k

D ≥ 0
w [ V

(15)

dn+1 yi
( )

being the desirability function yi in (n+ 1)th iteration; D is
the minimum value of desirability set at the beginning of the iterative
minimisation model; w [ V denotes the entire region defined early
in the process.

Given the discussion above, the MMSE approach proposed in this
section may be summarised as follows:

† Determining moving window and replicas:
Step 1: Compute moving window size and number for replicas

using ACF and (11).
Step 2: Compute the average m, the risk s and correlation r, for

each replica
† Portfolio optimisation

Step 3: Create the MDE with replicas for return, risk and entropy.
Step 4: Compute the return, risk and entropy for each replica.
Step 5: Perform regression analysis to choose the best polynomial

that models return, risk and entropy, calculating the coefficients of
the polynomial.

Step 6: Define the limits and target for function desirability.
Step 7: Acquire the feasible solutions and the portfolio

compound.
The proposed methodology is robust enough to deal with huge

systems. For this sake, a real power system is employed, as
described next.
3 Portfolio optimisation of power electricity
generation in the state of California

This section applies the proposed methodology in portfolio
optimisation to California’s electricity sector to find the best
combination for power generation. This combination has the
lowest cost and risk. Five technologies are chosen to compose the
portfolio: Combined Cycle Standard (natural gas fuel), Integrated
Gasification Combined Cycle—IGCC (coal fuel), solar
photovoltaic, hydro and geothermal.

The costs and risks can be divided into a fixed part (US$/MW),
determined by installed capacity, and a variable part (US$/MWh),
determined by electricity generated by a certain plant. Modelling
of cost and risk is based on studies presented in [5].
3.1 Mathematical modelling of cost and risk

This approach does not consider the time dimension. All costs are
expressed in (US$/MWh) determined from the number of annual
operating hours by technology or by (US$/MW) determined by
the capacity of the plant.
s
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Table 3 Fixed and variable costs

Combined
cycle

standard

IGCC Solar
photovoltaic

Hydro Geothermal

invest. 28.64 72.98 257.53 93.65 84.76
O&M fix. 3.66 11.98 0.00 4.85 5.94
O&M var. 1.61 9.38 47.03 11.10 11.15

Invest., investment cost (US$/MW); O&M fix., fixed operation and
maintenance (US$/MW); O&M var., variable operation and maintenance
(US$/MWh)

Table 4 Risk of cost in investment and operation and maintenance

Combined
cycle

standard

IGCC Solar
photovoltaic

Hydro Geothermal

invest. 5.73 14.60 0.00 0.00 0.00
O&M fix. 0.14 0.82 4.09 0.97 0.97
O&M var. 0.73 2.40 0.00 0.97 1.19

Invest., investment cost (US$/MW); O&M fix., fixed operation and
maintenance (US$/MW); O&M var., variable operation and maintenance
(US$/MWh)

Fig. 4 ACF at 5% significance of the cost of fuel to natural gas and coal
Suppose I as the set of available technologies (index i), and K the
set of cost categories (index k)

UTCOi =
∑
k

Ci,k = INVei + FUi + FOMei + VOMi;

∀i [ I
(16)

with

UTCOi unit cost for technology i (US$/MWh).
Ci,k component cost k for technology i.
INVei investment cost for technology i, expressed in (US$/MWh),
per year (notation e expressed in terms of energy).
FUi fuel cost for technology i.
FOMei fixed operation and maintenance costs for technology i
expressed in (US$/MWh), per year (notation e expressed in terms
of energy).
VOMi variable operation and maintenance costs for technology i.

The total risk for the technology i consists of the risk of different
costs of the category k, expressed by (18)

si =








∑
k

s2
i,k

√
, ∀i [ I (17)

With si being the risk of cost to the technology i and si,k the risk of
costs of category k and of technology i.

Correlations exist between the costs of different categories k and
of different technologies i. The formulation of the correlation rih
between the total cost of technologies i and h, and the cost of the
components k and l [ K is given by (19)

rih =
∑

k

∑
l rkl,ih · si,ksh,l

si · sh

, ∀i [ I (18)

With rkl,ih being the correlation between the cost of the categories k
and l, to the technologies i and h.

The average cost of portfolio p, (denoted by avcostp) (US$/MWh),
is defined by (20)

avcostp =
∑
i

wi · UTCOi (19)

With wi being the weight of technology i in portfolio p. The risk of
the portfolio is defined by (21), with i, h [ I

sp =






























∑
i

∑
h

wi · wh · rih · si · sh

√
(20)

The portfolio of lower cost and lower risk for wi can be determined
by minimising (20) and (21) with the restrictions

∑
i wi = 1 and

wi ≥ 0, ∀i [ I .
326
3.2 Power generation scenario in California

The investment’s fixed cost (construction or expansion of the plant),
fixed operation and maintenance (human resources, administration
and overhead) are expressed in US$/MW. The components of
variable costs are fuel and variable operating and maintenance
(repairs and auxiliary installations), expressed as US$/MWh.

According to [1, 5], the fuel cost is given by the variation of the
market price. Based on the forecasts made in Energy Information
Administration, [29], the time series of fuel costs can be obtained
for plants that use natural gas and coal plants, since solar, hydro
and geothermal use no fuel.

Fixed costs (investment, fixed operation and maintenance) and the
variable operation and maintenance costs were based on [30] and are
presented in Table 3.

The investment risk is determined by various parameters such as
construction time, licensing, and permission of the environment
regulator [1]. The risk of fuel is in line with price fluctuations over
the years, so the variance is calculated for each replica [1, 5]. The
risks of each component for investment and O&M fix. and O&M
var. are given in (US$/MWh); they are shown in Table 4 and are
based on [1, 5].

Correlations between components of similar costs (excluding fuel
costs) are equal to 0.7, while the correlation between the different
cost components is set to 0.1. These values are based on [1]. The
correlation between fuel costs are calculated for each time series of
each replica built from the moving windows.
3.3 Portfolio optimisation by MDE

After defining the scenario of power generation in the State of
California, the optimum portfolio using the proposed methodology
will be found using MDE with replicas and moving windows.
This was achieved using the desirability function implemented in
Minitab software and the entropy index was used to improve the
diversity of the portfolio.

To address the seasonality and volatility of the time series that
represent the cost of fuel, the concepts of moving windows and
IET Gener. Transm. Distrib., 2017, Vol. 11, Iss. 2, pp. 322–329
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Fig. 5 Arrangement mixtures of five technologies
replicas in MDE were applied. For this, it was necessary to define the
size and lag of the moving window (Step 1).

Of the 31 data points of the costs for natural gas and coal in the
State of California, the window size was estimated using the
definition in (11)

L = 31

4
= 7.75 � 8 (21)

The lag is determined by the ACF, as described in Section 2.3. In
Fig. 4, the ACF is presented for the cost of fuel for natural gas
and coal. Fig. 4 illustrates that the lag of the ACF with 5%
significance is 2. Therefore, the windows will move every two lags.

After defining the size and lag of the moving windows, they were
applied to the 31 time series, resulting in the 13 replicas used in
MDE.

Next, the cost (UTCOi), risk (si) and correlations (rih) for each
component in each one of the 13 replicas were determined using
(17), (18) and (19), respectively. The correlation between each
replica was also calculated (Step 2).

Entropy was used to diversify the portfolio as stated on (8). The
weights, wi of technologies must not be zero. Therefore, the
Table 5 MDE with five components and 13 replicas in Minitab

Combined cycle standard IGCC Solar photovoltaic

replica 1 0.9996 0.0001 0.0001
0.0001 0.9996 0.0001
0.0001 0.0001 0.9996
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.4999 0.4999 0.0001
0.4999 0.0001 0.4999

⋮ ⋮ ⋮
replica 2 0.9996 0.0001 0.0001

0.0001 0.9996 0.0001
0.0001 0.0001 0.9996
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.4999 0.4999 0.0001
0.4999 0.0001 0.4999

⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮
replica 13 0.9996 0.0001 0.0001

0.0001 0.9996 0.0001
0.0001 0.0001 0.9996
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.4999 0.4999 0.0001
0.4999 0.0001 0.4999

⋮ ⋮ ⋮
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proportions were delimited between 0.01 and 99.96% for the
lower and upper ends.

One can also add points within the design space (axial points).
These points provide information about the interior of the response
surface, improving the result [22]. Therefore, an axial point was
chosen. Fig. 5 shows the constructed MDE (Step 3).

With the constructed MDE, the weights, wi are used to calculate
the responses of cost, risk and entropy, as can be seen in Table 5
(Step 4).

Subsequently, regression analysis is performed and a quadratic
polynomial was chosen to model the cost and risk, according to
(3) (Step 5).

Before finding the optimal portfolio using the desirability
function, as defined in (14) and (15), it is necessary to define the
parameters for the value of the Target (Ti), Upper Limit (Hi) and
Lower Limit (Li). These parameters are defined based on statistical
values such as average, maximum and minimum cost value, risk
and entropy (Step 6).

To minimise cost and risk, the Target (Ti) used was the minimum
value and average was used as Upper Limit (Hi). To maximise
entropy, the maximum value was chosen as the Target (Ti), while
the average was used for the Lower Limit (Li). These values are
shown in Table 6.
Hydro Geothermal Cost Risk Entropy

0.0001 0.0001 35.2556 5.7781 0.0018
0.0001 0.0001 95.0876 14.8086 0.0018
0.0001 0.0001 304.4723 4.0904 0.0018
0.9996 0.0001 109.6098 1.3691 0.0018
0.0001 0.9996 101.8637 1.5340 0.0018
0.0001 0.0001 65.1716 9.7295 0.3023
0.0001 0.0001 169.8640 3.7493 0.3023

⋮ ⋮ ⋮ ⋮ ⋮
0.0001 0.0001 35.2852 5.7794 0.0018
0.0001 0.0001 95.1227 14.8086 0.0018
0.0001 0.0001 304.4724 4.0904 0.0018
0.9996 0.0001 109.6098 1.3691 0.0018
0.0001 0.9996 101.8637 1.5340 0.0018
0.0001 0.0001 65.2039 9.7554 0.3023
0.0001 0.0001 169.8788 3.7498 0.3023

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

0.0001 0.0001 35.2852 5.7794 0.0018
0.0001 0.0001 95.1227 14.8086 0.0018
0.0001 0.0001 304.4724 4.0904 0.0018
0.9996 0.0001 109.6098 1.3691 0.0018
0.0001 0.9996 101.8637 1.5340 0.0018
0.0001 0.0001 65.2039 9.7554 0.3023
0.0001 0.0001 169.8788 3.7498 0.3023

⋮ ⋮ ⋮ ⋮ ⋮
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Fig. 6 Optimal portfolio obtained through the desirability function

Table 6 Parameters used to maximise the desirability function

Cost Risk Entropy

Ti 35.26 1.37 0.70
Li 0.40
Hi 129.51 4.81

Table 7 Optimal portfolio components

Combined cycle
standard

IGCC Solar
photovoltaic

Hydro Geothermal

32.32% 1.02% 0.01% 33.03% 33.62%
The portfolio combination was achieved from these parameters
and it is represented on Table 7. The desirability function is also
presented on Fig. 6. These results correspond to Step 7 of the
proposed methodology.

The value of the cost of the optimal portfolio found (Table 6) is
US$ 83.13 by MWh and the risk is US$ 2.39 by MWh, as noted
in Fig. 6.

To validate the proposed methodology, the obtained results were
compared with the Markowitz mean-variance theory (blue points).
An efficient frontier from MVP was traced. The optimal portfolio
was achieved through the desirability function, represented by
Point A in Fig. 7.
Fig. 7 Efficient frontier determined by MVP. Point A is derived from Fig. 6
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As observed, Point A is very close to the feasible region and to the
efficient frontier. Furthermore, the portfolio is located in the
combination of lower cost and lower risk. Therefore, the result is
satisfactory. In addition, the proposed methodology determines an
optimal combination and not a set of optimal combinations as in
MVP, which facilitates decision-making. So, for these five
technologies (Combined Cycle Standard, IGCC, Solar
Photovoltaic, Hydro and Geothermal), the combination found
results in an optimised portfolio of lower cost and lower risk.

Another comparison was assessed for modelling time series by
ARMA-GARCH with the proposed methodology. The results were
statistically identical between the two methodologies for the t-test
(P−value = 0). Due to statistical similarities, the advantage of
using the methodology proposed is the simplicity (Occam’s razor
principle!), and processing time.
4 Conclusion

This study presented a new methodology to find the best
combination for power generation to obtain a portfolio with the
lowest cost and lowest risk. This combination, called an efficient
portfolio, was determined using MDEs. This work also showed
that Shannon entropy index along with replicas in MDE and
moving windows can be used to come up with a diversified
portfolio, dealing with seasonality and volatility of time series.
The work also compared its results with the traditional theory of
Markowitz mean-variance.

The advantage of using the proposed methodology with respect to
MVP is that MVP produces a line (efficient frontier) with various
possible solutions. In the proposed method, the result is an optimal
combination of lower cost and lower risk, which facilitates
decision making. Furthermore, with the use of moving windows
and computational replicas in MDE, the time series modelling
(which depends heavily on the expertise statistical judgment) is no
more needed.
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